
52 Business Integration Journal • October 2003

By Boris Lublinsky and
Dmitry Tyomkin

b u s i n e s s i n t e g ra t i o n j o u r n a l t a k e a w ay s
BUSINESS

SOA:
• Increases business-user control over adjustment of core processes
• Enables better tracking and visibility into processes (also known as

Business Activity Monitoring)
• Streamlines process execution and eliminates manual execution inef-

ficiencies via enterprisewide processes.

TECHNOLOGY

• Contains complexity by providing a natural way to decompose com-
plex problems into simpler, self-contained services

• Provides remote access to logic as needed rather than requiring its
installation on all computers that might need it.

• Encapsulates data, allowing for clean separation between service inter-
faces (enterprise data dictionary) and the internal data of a service.

Dissecting
Service-Oriented

Architectures

Numerous companies have
experimented with their
Web services pilot pro-

jects and found that this tech-
nology can be a viable addi-
tion to their development
practices. The next step is
to move beyond simple
point-to-point Web ser-
vices-based communi-
cations to broader

application of these tech-
nologies. This requires an

architectural shift to loosely cou-
pled, standards-based Service-

Oriented Architectures (SOA). Such architectures represent a new approach that requires a dif-
ferent perspective on the role of IT in the organization.

This article attempts to define SOA, where it fits in an organization, and how it relates to
existing architectures. It describes how to quickly implement SOA.

Business Integration Journal • October 2003 53

What Is SOA?
SOA is typically equated to Web ser-

vices and is described using the W3C
SOA architecture diagram (see Figure 1).
While correctly depicting major ele-
ments of the Web services environment,
this definition doesn’t really help uncov-
er the impact of SOA.

To understand this impact, start by
defining Enterprise Architecture (EA).
It’s defined in the standards as, “the fun-
damental organization of a system,
embodied in its components, their rela-
tionships to each other and the environ-
ment, and the principles governing its
design and evolution.” The Open Group
Architecture Framework (TOGAF) intro-
duces an architecture description as “a
formal description of an information sys-
tem, organized in a way that supports
reasoning about the structural properties
of the system. It defines the components
or building blocks that make up the over-
all information system, and provides a
plan from which products can be pro-
cured, and systems developed, that will
work together to implement the overall
system. EA is a conceptual tool that
assists organizations with the under-
standing of their own structure and the
way they work. It provides a map of the
enterprise and is a route planner for busi-
ness and technology change.”

Normally, EA takes the form of a
comprehensive set of cohesive models
that describe the structure and functions
of an enterprise. Important uses of it lie
in systematic IT planning and architect-
ing, and enhanced decision-making.
The individual models in an EA are
arranged in a logical manner, with an
ever-increasing level of detail about the
enterprise, including its:

• Objectives and goals
• Processes and organization
• Systems and data
• Technologies used.

The business, application, informa-
tion, and technology perspectives of EA
(see Figure 2) are important and com-
monly used.

The technology perspective lays out
hardware and software supporting the
organization. The application perspec-
tive, based on the technology perspec-
tive, defines the enterprise’s application
portfolio and is application-centered.
The business perspective describes how
business works, is based on the applica-

tion perspective, and includes broad
business strategies and plans for moving
the organization to an envisioned future
state. The information perspective tra-
verses the other three and describes data
required to properly manage processes,
operations, and infrastructure.

SOA is an architectural style that pro-
motes business process orchestration of
enterprise-level business services (see
Figure 3). The three major elements of
SOA are:

• Services: SOA models the enterprise
as a collection of business services,
which are accessible across the enter-
prise. Monolithic stovepipe applica-
tions are dissolved in favor of self-con-
tained business services that perform
specific functions. These services can
be invoked using a standard protocol,
ensuring their availability across the
enterprise and beyond.

• Processes: Business processes orches-
trate the execution of these enterprise ser-
vices to fulfill required business function-
ality. Enterprisewide processes essentially
define an enterprise’s operations.

• Organization: Organization owns all
the SOA artifacts and governs their cre-
ation, usage, access, and maintenance.

SOA has a profound impact on all the
perspectives of the EA, defined in
Figure 2. Let’s now consider in detail
two major components of SOA: services
and processes.

Services
Software development was always

driven by the desire to minimize cost
and increase flexibility. This creates
requirements for:

• Software reuse
• Loose coupling
• Ease of integration.

Attempts to find this holy grail of
software development have resulted in
constantly changing mainstream appli-
cation development practices — separat-
ing code into functions, Remote Proce-
dure Calls (RPCs) for the transparent
code distribution, object-oriented devel-
opment for encapsulation, component-

Service
Provider

Service
Description

Client

Discovery

Agencies

Service-Oriented Architecture

Service

Service
Description

Service
Requestor

Find Publish

InteractInteract

Figure 1 — SOA Definition From W3C

SOA is an architectural style
that promotes business process
orchestration of enterprise-level
business services.

54 Business Integration Journal • October 2003

based development for standardization
of software distribution and deployment,
and now service-oriented development.

Service-oriented development is
based on the concept of services. It’s the
realization of business functionality via
software that anyone can use, anywhere,
to compose new business applications
by using these services in the context of
new or modified processes.

This approach increases the reach of
applications and enables continual soft-
ware delivery. Service-based develop-
ment allows for convergence of tightly
coupled, highly productive aspects of n-
tier computing (service implementa-
tion) with the loosely coupled, message-
oriented concepts of messaging (service
interactions).

A service is defined in terms of its
interface, which is the way the service is
exposed to the outside world. This
includes the set of parameters (defining
data required for interaction with the
service) and communication protocol
used for data transfer and actual service
invocation. The service interface is
defined by a service name and set of
methods the service supports. Grouping
of the methods in the service interface is
defined by business functionality
(requirements) of the service.

The following characteristics are typ-
ical for services:

• Business-driven
• Coarse-grained
• Process-centric
• Stateless invocation
• Loosely coupled
• Distributed

• Standards-based.

Normally, services provide both the
business logic and state management
relevant to the functionality they’re
designed to support. When designing
services, the goal is to effectively encap-
sulate the logic and data associated with
real-world processes, which is similar to
Object-Oriented (OO) encapsulation.
Because you can call services across a
network, they should be coarse-grained.
That is, services should wrap a substan-
tial body of application logic, delivering
value that justifies the latency cost of a
network request. Similarly, services
should expose coarse-grained interfaces.
Rather than expose many interfaces that
each manipulate small amounts of state,
services should expose fewer interfaces
that allow a single request to perform a
complete function.

In summary, services provide a

model for software design with built-in
potential for integration and evolution.

Business Processes
Today’s IT systems are mostly record-

keeping systems. In the last 30 years, IT
has captured terabytes of data, which are
locked in stovepipe applications and
numerous (often proprietary) databases.
The methods, techniques, and mindset
of IT today is to remain fixated on data
capture, storage, and retrieval.

Businesses are defined through
dynamic processes that are constantly
expanding, contracting, and changing
with business activities. Because pro-
cesses are so hard to formalize and auto-
mate, they’ve long been second-class
citizens in IT. Only the most basic,
back-office processes are incorporated
in most IT systems. By contrast, busi-
ness processes of all shapes and sizes
are the focus of management attention.

Under the data-centric IT paradigm,
business people cannot obtain the infor-
mation needed to compete on cost, qual-
ity, speed, and service. They need action-
able information and knowledge. Com-
panies that want to increase their effec-
tiveness and competitiveness must make
the process, not data or application, the
basic unit of computer-based automation
and support. They must shift their focus
from records to processes. Process pro-
cessing must replace data processing.

A business process is a set of activi-
ties carried out in a sequence to realize
an objective. Every step contains associ-
ated actions, which are performed dur-
ing that step, and business rules that
define the transition to the next step.

According to the Workflow Manage-
ment Coalition Terminology and Glos-

Information
Perspective

Application
Perspective

Technology
Perspective

Business
Perspective

Figure 2 — Views of Enterprise Architecture

Organization

Business
Processes

Resources
(Services)

Owns Owns

Uses

Figure 3 — Basic SOA Model

Business Integration Journal • October 2003 55

sary, a business process:

• Is typically associated with objectives
and business relationships such as an
insurance claims process

• Has defined triggering (initiation)
conditions for each new process
instance (e.g., the arrival of a claim)
and defined outputs at its completion

• May involve formal or relatively
informal interactions between partic-
ipants; its duration may vary widely

• Processes can be used in a higher-
level business process as sub-
processes.

Enterprisewide processes constantly
evolve — processes also interact with
other processes. They change at a rate
that makes it difficult for applications
and developers to keep up. The only fea-
sible solution is to:

• Externalize processes, separating
them from applications and providing
tools to simplify process design, im-
plementation, and changes.

• Design applications in the form of ser-
vices that can play a role in the end-to-
end process and let them access exter-
nal data the process needs.

With this approach, the business
process can interact with and coordinate
services’ behavior with respect to the
overall goal of the process and each
other. This shifts the focus from appli-
cations to processes.

Solving these process-related prob-
lems on a case-by-case, application-by-
application basis does nothing more

than create more islands of automation
and record-keeping. The solution is to
shift perspective to the end-to-end
process, making it a centerpiece of EA,
as shown in Figure 4. Transition to this
architecture requires rethinking the
applications, from being all-encompass-
ing entities to services, integrated and
orchestrated by the business process to
support its required functionality.

SOA’s Impact on EA
Again, SOA impacts all four perspec-

tives of EA.

Business Perspective

SOA helps decompose functionality
into more manageable, reusable parts,
which can be separately designed, devel-
oped, and maintained. Adopting SOA
means definition of enterprise function-
ality occurs in terms of services and
processes. This approach allows for bet-
ter alignment of business and applica-
tion perspectives. If it’s easier to trace
the application perspective back to the
business perspective, it’s simpler to
implement required changes in function-
ality. Such a strategy also facilitates sep-

aration of business services (fairly stable
processing units) from processes (fast-
changing elements of a business model).

Aligning functionality with underlying
applications is also a more straightfor-
ward introduction of Business Activity
Monitoring (BAM), the real-time moni-
toring of business events and transac-
tions. Advances in business process im-
plementation allow for tighter integration
of BAM technologies with the execution
of a business process. BAM delivers real-
time business intelligence about the inte-
grated enterprise to management.

Enterprise business process require-
ments drive discovery and definition of
business services. Figure 5 provides a
high-level, simplified algorithm for this.

The first step is to create a model of
the business that identifies the funda-
mental entities and processes the busi-
ness offers. Domain and business
requirements should drive this. Part of
this procedure involves identifying a set
of services and interfaces to them for
every process. As the model is complet-
ed and refined, the services are reorgan-
ized based on the common functionality
of all required services. The next step is
to map required services onto existing
applications and define requirements
for creating new services:

• If an application exists that supports
required functionality, it must be val-
idated, resulting in the specification
of additional functionality that might
be required. When this occurs, the
functionality needs to be wrapped to
provide interfaces that expose it for
use outside the application.

• If there are no applications with the
required functionality, then service
interfaces must be solidified. Based on
these interface definitions and require-
ments, the actual service implementa-
tion must be created. Creating new
services doesn’t always mean creating
complete service functionality from

Service Service Service

Service Service Service

Business Process

Engine

Figure 4 — Business Process-Driven Enterprise Architecture

Enterprisewide processes
constantly evolve — processes
also interact with other
processes.

56 Business Integration Journal • October 2003

scratch. Service implementation can
partially delegate execution to one or
more existing applications and supple-
ment it with some new code.

Application Perspective

Introduction of services in the appli-
cation perspective promotes loose cou-
pling. Every service can be individually
designed, constructed, and maintained.
This approach eases overall mainte-
nance of the application portfolio. Intro-
duction of services leads to the applica-
tion architecture shown in Figure 6. The
architecture is comprised of disparate
services communicating with one
another over the service bus. Additional
components are:

• Business process engine, allowing for
externalizing the business process.
Introduction of the separate business
process engine provides separation of
business process definition and exe-
cution from services implementation,
allowing for even looser coupling in
the application architecture.

• Service locator, allowing for external-
ization of the service location, sup-
porting service location transparency

• Business services encapsulating the
actual business functionality

• Utility services, which are special
kinds of business services that don’t
belong to a firm’s core business but
can still be accessed by any client

• Common (infrastructure) services,
providing system and infrastructure
support for business services.

Compared to writing stand-alone
applications, the process of designing,
developing, deploying, managing, and
maintaining robust services entails
higher upfront costs.

Information perspective

The SOA implementation introduces
two data-related concerns:

• Underlying data models for the ser-
vice implementation

• Data dictionary for service messages,
defining communications semantics
of the SOA.

This separation of information per-
spective substantially simplifies the
overall enterprise information strategy.
In an SOA implementation, the data
model exposed by the enterprise appli-

Start

End

Identify
business

requirements

Create
business model

Identify
business

processes

For every
process

Map service
to existing

applications

Define
exposed interface

Define interface
for new service

Create service
implementation

Identify required
services and

their interfaces

Refactor services and
interfaces based on

the functionality

For every
service

Yes NoCan service be
implemented in existing

application

Figure 5 —Defining Business Services

Business Integration Journal • October 2003 57

cation portfolio and used by internal
and external enterprise processes is
defined by the messaging data diction-
ary, which is decoupled from the under-
lying data model. Different services can
use completely unrelated internal data
models (they’re encapsulated by ser-
vices) as long as the data semantics that
they’re exposing adhere to the semantic
data dictionary the enterprise adopts.

Because the messaging data diction-
ary is usually significantly simpler then
the underlying data model, achieving
common messaging semantics is usual-
ly easier than unifying the underlying
data model.

Technology Perspective

It is a basis for building enterprise-
scale services. It provides the foundation
for the consistent policy and management
of services development and mainte-

nance. SOA usually requires developing
an infrastructure that can be shared by
many services delivering against diverse
functional requirements. Operational sup-
port capabilities should be implemented
once for all services in the organization.

Figure 7 shows a set of generic facili-
ties (based on the service life cycle
requirements above) that provide enter-
prisewide services for the SOA imple-
mentation. These facilities provide the
common support required by any service
in the application portfolio. Figure 7 con-

tains three major parts, dedicated to the
three technology platform components:
tooling, infrastructure, and run-time sup-
port. The tooling component provides
tools, processes, methodologies, and pat-
terns required to design, develop, assem-
ble, and test services and service-based
processes. The infrastructure component
provides basic infrastructure support for
the services run-time, which consists of:

• Service deployment: concerns the
processes and technology choices
around deployment of services,
including host platform

• Infrastructure and configuration:
provides middleware, operating sys-
tem, hardware, storage, networking,
and the trust and management sup-
port for the whole system

• Service run-time support: hosts the
process, logic, functions, and state
management required by a service-
based application and is the full
enterprise application environment
with specific support for services

• Service binding and invocation:
contains services binding and invoca-
tion mechanisms, including support
for both locating and invoking enter-
prise services and exposing applica-
tions or code as services in different
operational environments.

The run-time component is responsi-
ble for the additional support for SOA
and consists of two major parts:

• Quality of Service (QoS) support
• Service versioning support.

Achieving the Vision
Achieving the described levels of

power and flexibility is difficult. It isn’t
feasible today to throw away existing IT
systems and start with a clean slate. In
reality, services are created by integrating
and extending existing applications. You
create them by aggregating components,
some of which wrap existing applications.

As shown in Figure 8, typical service
implementation exposes existing legacy

Technology Platform

Service Deployment

Service Binding and Invocation

Service Run-Time Support

Infrastructure and Configuration

D
evelo

p
m

en
t a

n
d

Test To
o
ls

V
ersio

n
in

g
 S

u
p

p
o
rt

Q
o
S

 su
p

p
o
rt

Figure 7 — Conceptual View of Technology Architecture

Infrastructure

Service

Business

Service

Business

Service

Utility

ServiceUtility

Service Utility

Service

Infrastructure

Service

Infrastructure

Service

Service Bus

Service LocatorBusiness Process

Engine

Figure 6 —Typical SOA Application Architecture

While useful, Web services
standards are just a vehicle to
help SOA delivery.

58 Business Integration Journal • October 2003

system functionality. It doesn’t do it
directly (as an EAI implementation
would), but encapsulates the functional-
ity in its own implementation, which
allows for:

• Extending the legacy system func-
tionality without touching existing
legacy systems

• Increasing granularity of the service
by combining the functionality of
multiple legacy systems (or multiple
interfaces of the same legacy system)
and implementing additional func-
tionality to rationalize this data

• No exposure of the existing applica-
tion’s portfolio.

The SOA approach differs from and is
complementary to existing EAI initia-
tives. Most EAI projects are driven by IT
and aimed at connectivity of the enter-
prise application portfolio. SOA enables
the rationalization of existing applica-
tions against services, thus facilitating the
convergence of IT with the business. This
approach allows for building a working
blueprint of the EA that supports business
initiatives without a major overhaul of
existing enterprise applications.

Additional driving forces for creation
of this service layer include business
process requirements. Although it’s pos-
sible to create enterprise processes
through EAI, based on the existing appli-

cations, this approach leads to embed-
ding the existing application portfolio in
the high-level enterprise processes.
Introducing the services layer described
above allows for creating a meaningful
business abstraction layer between exist-
ing applications and processes. Figure 9
shows this architecture.

Conclusion
Organizations should use SOA to

bridge the gap between diverse applica-
tions and address the growing demand
for the power and flexibility of Business
Process Management (BPM). The ser-
vices layer, introduced by SOA, allows
for direct mapping of business artifacts
into an existing application portfolio. If
properly implemented, SOA provides
significant benefits for both business
and IT. All four architectural perspec-
tives (business, application, informa-
tion, and technology) need to be
addressed to deliver SOA. While useful,
Web services standards are just a vehi-
cle to help SOA delivery.

Boris Lublinsky is
an enterprise archi-
tect at CNA Insur-
ance, where he is
involved in design
and implementation
of CNA’s integration
strategy, building ap-

plication frameworks, and implementing ser-
vice-oriented architectures. Prior to this he
was a director of technology at Inventa Tech-
nologies, where he was overseeing and active-
ly participating in engagements in EAI and
B2B integration implementations and devel-
opment of large-scale Web applications.
e-Mail: boris.lublinsky@cna.com.

Dmitry Tyomkin
is an enterprise
architect at CNA
Insurance. He has
more than 15 years
of industry exper-
ience. His career
spans such diverse

computing areas as mainframe programming,
embedded systems, and Web development. He
has worked in various industries, including
telecommunications, retail, finance, pharma-
ceuticals, and software. Currently, he special-
izes in J2EE technology, XML-based commu-
nications, portals, and wireless computing.
e-Mail: dmitry.tyomkin@cna.com.

About the Authors

Business Process-
Driven Enterprise

Services-Rationalization
of Enterprise Systems
Against Business
Meaningful Services

EAI — Integrating
and Exposing Existing
Enterprise Systems

Existing IT
Hardware/Software
Topology

ServersServers

Mainframe Mainframe
Workstations

Data Data
Data

Figure 9 — Service Layer in the Overall Architecture

Service Invocation

Le
g

a
cy

A
d

a
p

te
r

Le
g

a
cy

A
d

a
p

te
r

Legacy
Application

Legacy
Application

Component

Component

Component

Component

Service Façade

Service Implementation

Figure 8 — Service Implementation

